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Phase-field modeling of near-wellbore hydraulic frac-
ture nucleation and propagation

1.1 Introduction

The goal of Task 2 of the project titled "Closing the loop between in situ stress complexity and
EGS fracture complexity" is to model fracture nucleation and propagation in the near wellbore
region and, in combination with the experimental study conducted as part of Task 4, investigate
the relationship between the in situ stress and the near-wellbore fracture patterns. To this end,
We have identified phase field as a promising modeling approach to model the nucleation and
propagation process in the near wellbore region. In phase field, fractures are represented by a
diffuse variable, i.e the damage. Compared to approaches that model fractures as sharp interfaces,
phase field does not require any re-meshing or element insertion algorithm, which makes the
treatment of complex fracture geometries straightforward, even with simple meshes.

On the other hand, all phase field formulations for hydraulic fracturing that had been
developed prior to the start of this project, focused on the propagation of existing fractures.
In fact, they cast the problem in terms of the minimization of the total potential energy of
the system. As a consequence, they accurately model fracture propagation, in agreement
with fracture mechanics theory, but they neglect the material strength-based mechanism that
determines fracture nucleation in the bulk of the material. Thus, we have devised a novel phase
field formulation for hydraulic fracturing capable of modeling both nucleation and propagation.
Specifically, we have extended the work by Kumar et al. (2020), which focuses on traction-
free fractures in brittle materials, to hydraulic fracturing and we have implemented our novel
formulation in the GEOS simulation framework.

In this report, we provide a brief description of the phase field formulation we have developed
in Section 1.2. Then, in Section 1.3, we summarize the discretization and the solution strategy
that we have adopted in GEOS. Finally, in Section 1.4 we present some numerical examples of
near-wellbore hydraulic fracturing, both 2D and 3D, to demonstrate how phase field can be used
to model the systems of interest. Finally, in Section 1.5, we draw some conclusion and discuss
future steps.

1.2 phase field approximation and governing equations

Let us consider a poroelastic domain Ω fully saturated by a compressible fluid. The domain
boundary, 𝜕Ω, consists of a displacement boundary 𝜕𝑢Ω, a traction boundary 𝜕𝑡Ω, a pressure
boundary 𝜕𝑝Ω and a flux boundary 𝜕𝑞Ω, such that
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𝜕𝑢Ω ∪ 𝜕𝑡Ω = 𝜕Ω, 𝜕𝑢Ω ∩ 𝜕𝑡Ω = ∅, (1)

𝜕𝑝Ω ∪ 𝜕𝑞Ω = 𝜕Ω, 𝜕𝑝Ω ∩ 𝜕𝑞Ω = ∅. (2)

Hydraulic fractures Γ may nucleate and evolve inside the domain. To model hydraulic
fracturing we seek the displacement 𝑢, the pressure 𝑝, and the fracture geometry Γ that satisfy
the governing equations describing the evolution of the system in the time interval [0, 𝑇].

The phase field regularization consists in approximating the hydraulic fractures Γ with a
diffusely distributed damage variable 𝑑 ∈ [0, 1], where 𝑑 = 0 indicates a fully intact material
and 𝑑 = 1 is a completely damaged (fractured) material. Given this regularization, the strong
form of the boundary value problem entails finding the displacement (𝒖), the fluid pressure (𝑝),
and the damage field (𝑑) that satisfy

∇ · [𝝈′(𝜺, 𝑑) − 𝑚(𝑑) (𝑏 − 1)𝑝1] − 𝑚(𝑑)∇𝑝 + 𝜌𝒈 = 0, (3)
2(𝑑 − 1)𝑊 𝑒 − 𝑚′(𝑑)𝑏𝑝∇ · 𝒖 + 𝑚′(𝑑)∇ · (𝑝𝒖) + 3G𝑐

8𝐿
[
1 − 2𝐿2∇𝑑

]
+ 𝑐𝑒 = 0, 𝑑 > 0,

2(𝑑 − 1)𝑊 𝑒 − 𝑚′(𝑑)𝑏𝑝∇ · 𝒖 + 𝑚′(𝑑)∇ · (𝑝𝒖) + 3G𝑐

8𝐿
[
1 − 2𝐿2∇𝑑

]
+ 𝑐𝑒 ≤ 0, 𝑑 = 0,

(4)

𝜕

𝜕𝑡

(
𝜙𝜌 𝑓

)
+ ∇ ·

(
𝜌 𝑓 𝒗

)
= 𝑠, (5)

subject to the appropriate boundary and initial conditions. Here, Eq. (3) is the momentum
balance equation where 𝝈′ is the effective stress tensor, 𝜺 is the strain tensor, 𝑚(𝑑) is a damage-
dependent function, 𝑏 is the rock Biot’s coefficient, and 𝜌𝒈 is the body force. Eq. (4) is the
damage evolution equation. 𝑊 𝑒 (𝜺) is the strain energy of the intact material, G𝑐 is the critical
fracture energy, 𝐿 is a characteristic length scale, and 𝑐𝑒 (𝝈′, 𝐿) is an external driving force term
characteristic of the material strength surface, first introduced in Kumar et al. (2020). Finally,
Eq. (5) in which 𝜙 is the rock porosity, 𝜌 𝑓 is the fluid density, 𝑠 is the source/sink term and, 𝒗 is
the fluid Darcy’s velocity, i.e.

𝒗 = − 𝒌

𝜇 𝑓

· (∇𝑝 − 𝜌 𝑓 𝒈). (6)

Here, 𝒌 is the permeability tensor, 𝜇 𝑓 is the fluid viscosity. One complexity associated with
modeling hydraulic fractures with phase field is the computation of the crack aperture which
is challenging when using a diffuse crack representation (see Yoshioka et al. (2020) for more
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details). Here, we employ an empirical relationship expressing permeability as a function of
damage (Pĳaudier-Cabot et al., 2009).

For additional information, we encourage interested readers to consult our detailed publication
(Fei et al., 2023a).

1.3 Discretization and solution strategy

Equations (3) - (5) are discretized in time and space. For the time discretization we employ a
Euler backward scheme. For the spatial discretization we employ a low order finite element
method to discretize the momentum balance and the damage evolution equations whereas we
use a hybrid mimetic finite difference scheme to discretize the fluid flow equation.

The nonlinear system of discrete equations (3) - (5) is solved using a sequentially coupled
approach, widely used in the phase field literature (e.g., Miehe et al. (2010); Fei and Choo
(2021); Geelen et al. (2019)). Given the solution at a given time step 𝑛, {𝑝𝑛, 𝑢𝑛, 𝑑𝑛}, first, all
damage dependencies are frozen and the coupled momentum balance and fluid flow equations
are solved to find 𝑝𝜈+1 and 𝑢𝜈+1. Subsequently, with the newly updated values of pressure
and displacements, we solve the damage evolution equation to determine 𝑑𝜈+1. This staggered
approach is iteratively executed until the solution converges according to a predefined criterion,
thereby obtaining the solution at time step 𝑛 + 1, i.e. {𝑝𝑛+1, 𝑢𝑛+1, 𝑑𝑛+1}.

1.4 Numerical examples

1.4.1 Verification examples

The formulation and discretization methods outlined in the preceding sections have been
rigorously verified against analytical solutions. While these verification examples are not
included in this report, they can be found in detail in our publications, Fei et al. (2023b) and Fei
et al. (2023a).

1.4.2 Near-wellbore hydraulic fracturing examples

In this subsection, we showcase a variety of numerical examples for both two-dimensional (2D)
and three-dimensional (3D) models. These examples illustrate the application of our newly
developed phase field method in simulating the onset and development of hydraulic fractures
near wellbores. We pay particular attention to varying stress conditions and the impact of
heterogeneous material property distributions.
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The test cases we present here are aligned with the length scales of the experimental setup
created for Task 4 of this project. We have summarized the fluid and rock parameters used in
all simulations in Table 1. In our models, we assume materials have no initial deformation
(𝜀vol,0 = 0), start with zero fluid pressure (𝑝0 = 0), and exclude gravitational effects which are
negligible at the length scales considered.

Bulk modulus, 𝜅 GPa 16.7
Shear modulus, 𝐺 GPa 12.5
Critical fracture energy, G𝑐 kJ/mm2 0.004
Tensile strength, 𝜎ts MPa 5.5
Compressive strength, 𝜎cs MPa 40
Bulk modulus of the grain, 𝜅 GPa 83.5
Matrix permeability, 𝑘 m2 1 × 10−15

Initial Porosity, 𝜙0 - 0.1
Fluid viscosity, 𝜇 𝑓 cp 1
Fluid density, 𝜌 𝑓 kg/m3 1000
Damage coefficient for permeability, 𝛼𝑘 - 7

Table 1: Parameters for the phase field modeling of near-wellbore hydraulic fracturing.
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Example 1: near-wellbore nucleation and propagation in 2D
Let us consider a two-dimensional square domain measuring 200 mm on each side, featuring a
circular wellbore with an 8 mm diameter located at its center. To mimic the effect of defects on
the wellbore surface in our model, we introduce two weak points on the wellbore, as illustrated in
Fig. 1. This is accomplished by assigning a lower tensile strength (𝜎ts = 2 MPa) at these points,
which is intended to facilitate fracture nucleation in these areas. This modification enables
us to investigate the nucleation of fractures from the wellbore under varying stress conditions.
Specifically, we focus on how fractures develop for different ratios of maximum and minimum
horizontal stresses.

Figure 1: Example 1 - geometry boundary conditions and zoom ono the wellbore surface.

Figure 2 showcases the patterns of near-wellbore hydraulic fractures under a constant
minimum horizontal stress (𝜎ℎ = 9 MPa) and varying values of the maximum horizontal stress
(𝜎𝐻). Notably, it becomes apparent that the likelihood of fracture nucleation at the weak
points decreases and the fractures tend to orient more perpendicularly to 𝜎ℎ as the value of
𝜎𝐻 significantly exceeds 𝜎ℎ. This phenomenon occurs because a larger contrast in horizontal
stresses (i.e., 𝜎𝐻 − 𝜎ℎ) results in a higher tensile stress around the wellbore. As a consequence,
the in situ stress exerts a more pronounced influence on the orientation of the near-wellbore
hydraulic fractures. Additionally, for the cases with lower values of the maximum horizontal
stress (𝜎𝐻), fractures tend to realign with the principal direction as they propagate away from
the wellbore. Such patterns are consistent with experimental hydraulic fracturing studies (see,
e.g., Bunger and Lecampion (2017)).
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Figure 2: Example 1 - hydraulic fracture patterns obtained for increasing (left to right) values of the
maximum horizontal stress.

Example 2: fracture nucleation and propagation from a vertical wellbore
We now shift our focus to a three-dimensional cubic domain, with dimensions of 200 mm on each
side. Within this domain, a vertical cylindrical wellbore, which has a diameter of 26 mm and
runs parallel to the z-axis, is drilled through. The specific geometry and boundary conditions of
this setup are illustrated in Fig. 3. In this model, in situ stresses are applied in all three directions:
𝜎𝑣 = 17.5 MPa (vertical stress), 𝜎𝐻 = 15 MPa (maximum horizontal stress), and 𝜎ℎ = 10 MPa
(minimum horizontal stress). Mirroring the approach used in our previous two-dimensional case,
we set zero pressure conditions on all external boundaries of the 3D model and fix their normal
displacements. The simulation focuses on the nucleation and growth of hydraulic fractures
resulting from fluid being injected at a pressure that increases over time, defined as 𝑝inj(𝑡) = 1
[MPa/s]·𝑡 [s]. Injection occurs in the central 100 mm section of the wellbore. For this simulation,
the regularization length, denoted as 𝐿, is set at 1 mm, and the calibrated parameter 𝛿𝐿 has a
value of 3.28.

In addition to the previous parameters, our simulation also accounts for a heterogeneous
distribution of critical fracture energy as shown in Fig. 4. This mimics the varying resistance
to fracture growth across the domain due to the texture of the rock. Furthermore, we have
designated three distinct zones along the wellbore, each characterized by a reduced tensile
strength. This setup is intended to simulate potential defects on the wellbore surface that may
influence the initiation of fractures.

Figure 5 illustrates the evolution of damage in both two-dimensional (at 𝑧 = 100 mm) and
three-dimensional views. In the 2D view, it’s observed that hydraulic fractures initially nucleate
from the two upper weak zones, followed by the formation of a third fracture from the lower one.
This pattern echoes the results seen in the 2D wellbore simulations, where fractures exhibit a
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Figure 3: Example 2 - geometry of the 3D wellbore hydraulic fracturing test case.

Figure 4: Example 2 - 2D view of the distribution of critical fracture energy.
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curved trajectory as they move away from the wellbore. The 3D view further reveals that the
fractures do not align with the wellbore’s vertical orientation but display slight bending due to
the material heterogeneity. This results in more complex fracture patterns in the vicinity of the
wellbore.

Figure 5: Example 2 - damage evolution representing hydraulic fracture growth from a 3D wellbore with
three weak zones and material heterogeneity.

Figure 6 shows, instead, a comparison of the fracture geometries obtained for two different
values of the maximum horizontal stress. Remark that as the difference between the minimum
and the maximum horizontal stresses increases, there is a marked tendency for fractures to
nucleate and extend in the direction perpendicular to 𝜎ℎ.

1.5 Conclusions and future work

In this report, we have presented the novel phase field formulation we have developed to simulate
nucleation and propagation of hydraulic fractures in the near-wellbore region. It is worth
underlying the following points:
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Figure 6: Example 2 - Comparison of the fracture patterns obtained with two different values of the
maximum horizontal stress and 𝜎ℎ = 10 MPa.

• to correctly capture fracture nucleation, we extended the damage evolution equation by
adding the contribution of an external driving force and we have devised the appropriate
damage function, 𝑚(𝑑);

• we have verified the accuracy of the proposed method with analytical benchmarks;

• as shown by the examples presented, the phase field formulation we have proposed can
easily be used to simulate both nucleation and propagation of hydraulic fractures and it
can easily deal with complex fracture geometries without the need for complex re-meshing
algorithms. As such, it is suited to study the interplay between material heterogeneities, in
situ stress, and wellbore orientation on the fracture pattern in the near wellbore region;

• the external driving force term plays a crucial role in our simulations and must be precisely
formulated to align with the characteristics of each specific yield surface. Up to this point,
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our approach has involved using a version of the external driving force that is specifically
designed to complement the Drucker–Prager yield model.

Our ongoing and future efforts are directed towards applying the method we have presented
here in conjunction with the hydraulic fracturing experiments carried out under Task 4 of our
project. Additionally, we are planning to expand the scope of our phase field formulation
to include non-isothermal conditions, thereby broadening its applicability and relevance in
simulating more complex scenarios where temperature variations play a significant role.

Model availability

All results showcased in this report were generated utilizing GEOS, an open-source subsurface
simulator available at geos.dev. The GEOS codebase along with all input files used to run the
models presented can be accessed and downloaded from its official website at www.geos.dev.
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